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n×m −→ n+m

The data multiplexer M acts as a universal adapter between sources Si and endpoints Ej, routing flows that
maximize utility U while minimizing total cost C = Cd +Ct. Edge thickness indicates utility; color indicates
direction (blue: source→M , red: M→endpoint).

Executive Summary. Machine learning systems are fundamentally the composition of data and
transformations. As these systems migrate from research to core economic infrastructure, shifts
across scale, market structure, and consumer endpoints create both friction and opportunity. To-
day, friction materializes as transaction costs; such as search, integration or contracting; forcing
n×m bilateral negotiations between sources and endpoints. However, advances in utility predic-
tion, metadata standards, and LLM-powered interfaces make a different architecture feasible. We
introduce the Brickroad multiplexer to harness the opportunities and reduce friction in data
flow: a universal adapter where sources and endpoints each connect once, reducing integrations
to n+m. By decomposing cost into data cost Cd (the value of bits) and transaction cost Ct, the
multiplexer minimizes both, optimizing min(Cd + Ct) subject to utility thresholds. The result:
data procurement shifts from months to milliseconds, the long tail of specialized data becomes
accessible, and price reflects utility rather than negotiating power.

1 Structural Shifts in Data Systems
Machine learning ("ML") is fundamentally the composition of data and transformations. A dataset
enters a transform and emerges as a new representation: a weight, a prediction, a model. The cycle
perpetuates ad-infinitum:

D
f1−→ D′ f2−→ D′′ f3−→ · · ·
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ML pipelines, from raw data through preprocessing, training, fine-tuning, and inference, are com-
positions of such mappings. However, the infrastructure that has been optimized to support these
pipelines on research workloads and closed production stacks for over a decade is coming under
strains in a world of networked ML systems proliferated by agent interfaces that come with scale,
high connection density and production-grade latency requirements.

1.1 Infrastructure Shifts
For decades, data composition happened at research community scale: curated datasets, careful
experiments, static and concentrated benchmarks. As ML systems propagate into the real-world
economic value chain at a new scale as agents, increasingly operating in the long tail of real-world
value creation, infrastructure requirements are shifting.

Scale creates friction and opportunities. Data streams now cross organizational bound-
aries, mixing heterogeneous sources that were never anticipated to interoperate. A single endpoint
may need to compose text corpora, image repositories, and proprietary APIs into a unified data
product. The space of available sources has grown from dozens to millions, each with distinct
schemas, access patterns, and provenance. This heterogeneity is a coordination problem, but it also
means that, for those who can solve the integration challenge, compositions previously impossible
(cross-domain, cross-modal, cross-organization) are now within reach.

Endpoint diversity drives new markets. Consumers have multiplied from researchers run-
ning experiments to agents, engineers, pipelines, and applications that query data programmatically
for mission- and business critical applications. Each endpoint cell in this lattice has different re-
quirements: freshness constraints, license restrictions, budget limits, task-specific utility needs. This
diversity fragments the market, but it also creates demand for specialized data products that could
not find buyers in the research era.

Composability demands standardization. Static, monolithic datasets give way to modular,
dynamic data products. Sources must interoperate without bespoke integration. The challenge is
no longer acquiring a single dataset but composing flows from many sources to many endpoints,
doing so continuously as both lattices evolve. This pressure is accelerating the adoption of metadata
standards that make composition tractable.

API-first access enables dynamic routing. Credentials, rate limits, and programmatic
access replace bulk downloads. Data is consumed as a flow, not owned as an artifact. This creates
opportunity for infrastructure that routes flows dynamically, matching sources to endpoints in real-
time based on current needs rather than static contracts.

1.2 Economic Shifts
Data is becoming an economic asset, and with that comes the machinery of markets [5].

The role of transaction costs. The friction in acquiring data is less about the payload
itself than about the external transaction variables. Particularly in an opaque, closed market they
span legal review, licensing and cost negotiation, integration engineering, quality evaluation. This
overhead can make small transactions uneconomical, concentrating the market among large players
who can amortize overhead [2, 10]. Without a multiplexer, each cell in the source lattice in Figure
1 must wire to each cell in the endpoint lattice: n × m transactions, each carrying full friction.
But this is a structural problem, not a fundamental one: infrastructure that standardizes these
transactions will collapse the overhead.

The viability frontier. Transaction costs create an economic boundary, a viability frontier,
that determines which data sources are worth acquiring. When Ct is high, only large, known, and
well-marketed or established datasets cross this threshold: the expected utility must exceed the
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transaction overhead before a deal makes sense. This concentrates the market around the “head”
of the distribution: a handful of canonical datasets that are widely used, the old “benchmark to
research” paradigm. The “long tail” of specialized, niche, and emerging sources needed for agen-
tic value creation in-context remains locked behind transaction barriers, even when their utility
for specific tasks would be substantial. Lowering Ct moves this frontier outward: sources that
were previously uneconomical become viable. A rare disease imaging dataset with only 5,000 sam-
ples, a specialized sensor corpus from a single research lab, a curated collection of domain-specific
annotations—all become accessible when the fixed cost of acquisition drops from tens of thousands
of dollars to near-zero.

Estimating utility. Advances in task-data matching mean we can now predict the marginal
utility U(S,E, task) of a dataset for a specific task before acquisition [6, 7]. It shifts procurement
from marketing and broker-driven to utility-driven: endpoints can evaluate sources by measured
contribution rather than vendor claims. And intermediary-free preview-before-purchase becomes
possible, changing the economics of data acquisition.

1.3 Agentic Shifts
The profile of data consumers is changing from humans to machines.

Agents query dynamically. Autonomous systems compose data on-the-fly based on task
requirements, selecting sources in real-time rather than curating corpora in advance. An agent
cell needs to reach any source cell instantly, without pre-negotiated integrations. LLMs now enable
natural-language interfaces to data procurement, where an agent can describe what it needs in plain
text, and the system can translate that to structured queries across heterogeneous catalogs.

Pipelines require self-healing. Production-ready data feeds must adapt when upstream
sources change: new schemas, deprecated endpoints, shifting quality and evaluation requirements.
Modern ML tooling makes it possible to automatically detect schema drift, quality degradation,
and distribution shift, enabling pipelines that adapt rather than fail. The infrastructure must
support liquid APIs, interfaces that adapt as schemas evolve, endpoints change, and requirements
shift. Unlike static integrations that break when upstream sources change format, liquid APIs
absorb change: schema migrations are handled by the adapter layer, deprecated fields are mapped
to replacements, and new capabilities are exposed without client-side updates. LLMs can now
perform schema translation dynamically, making this adaptability practical where it was previously
intractable.

Applications demand verification. Real-time data routing requires quality guarantees,
provenance tracking, and continuous evaluation. When data feeds production models, errors propa-
gate to user-facing decisions. The flow from source to endpoint must be auditable and trustworthy,
with clear lineage from origin through every transformation.

These shifts create a friction-filled landscape where transaction costs block access to niche data
sources, static infrastructure cannot serve dynamic endpoints, and heterogeneous sources resist
composition. Each source cell wiring to each endpoint cell creates n ×m integration points, each
carrying legal, technical, and economic friction. But the same shifts that create this friction also
provide the tools to build an adapter that collapses this complexity.

2 The Data Multiplexer
The Brickroad multiplexer infrastructure routes the right data to the right endpoint at minimal
cost. Like a network multiplexer that routes signals from many inputs to optimal outputs, the
Brickroad multiplexer consolidates data demand, discovery, evaluation, and purchasing into a single
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Without Adapter

n × m edges

each: Cd + Ct

months

vs

With Adapter

M

n + m edges

Ct minimized, only Cd

milliseconds

Figure 1: Without the adapter (left), each source cell wires to each endpoint cell: n×m connections,
each carrying data cost Cd plus transaction cost Ct. With the adapter (right), cells connect once
to the multiplexer: n+m integrations, transaction cost minimized, data cost flows based on actual
consumption.

interface. We formalize this as the Data Multiplexer Protocol (dmp), a standardized interface
for source registration, endpoint queries, and transaction execution.

2.1 The Adapter
Consider a market with n sources and m endpoints: the source lattice {S1, S2, . . . , Sn} and the
endpoint lattice {E1, E2, . . . , Em}, where i indexes sources and j indexes endpoints throughout.
Without an adapter, each endpoint must configure its own connections to each source: n × m
integrations, each carrying cost. The total friction scales multiplicatively.

The multiplexer M acts as a universal adapter between these lattices. Each source connects
once to M ; each endpoint connects once to M . The integration count collapses from n×m to n+m
for network endpoints. One adapter serves all participating cells. Each source-endpoint flow carries
two distinct costs:

Cd,i = data cost: the intrinsic value of the bits from source Si (1)
Ct,ij = transaction cost: overhead of connecting source Si to endpoint Ej (2)

Total cost is C = Cd+Ct. Without the multiplexer, both costs scale with each bilateral transaction.
With the multiplexer, Ct is absorbed by the adapter layer and amortized across all transactions,
while Cd remains tied to actual data value. Transaction costs never reach zero; there is always
some overhead in routing, authentication, and coordination, but the multiplexer minimizes them by
replacing n ×m bilateral negotiations with standardized protocols. The optimization target shifts
from minimizing negotiations to minimizing data spend for a given utility.

Each flow also has associated utility U(Si, Ej , task), the value of source Si for endpoint Ej on
a given task. We write Uij as shorthand when the task is clear from context. The multiplexer
optimizes:

M : (Query,Context) → {(Si, Ej , Uij , Cd,i, Ct,ij)} (3)

selecting source-endpoint pairs that minimize total cost subject to a utility threshold θ:

min
∑(

Cd,i + Ct,ij

)
subject to

∑
Uij ≥ θ (4)

4



The multiplexer provides a universal interface: a standardized way for any source cell to expose
data and any endpoint cell to consume it. Heterogeneous schemas, access patterns, and licensing
terms are absorbed by the adapter layer, presenting a uniform surface to both sides of the lattice.

Without the multiplexer, each endpoint negotiates separately with each source. Both Cd and Ct

scale multiplicatively. A typical enterprise data procurement cycle takes 3-6 months from initial dis-
covery to production integration, with legal review alone consuming 4-8 weeks [5]. Utility is unknown
until after acquisition. Niche and specialized sources remain inaccessible behind friction barriers.
With the multiplexer, sources and endpoints connect once to a shared adapter. Transaction cost Ct

is minimized through standardized contracts, pre-negotiated licenses, and automated integration.
Data cost Cd scales only with actual data consumed. Procurement drops to API-call latency (mil-
liseconds for cached sources, seconds for new acquisitions). Utility is estimated before acquisition
through sample-based evaluation. The long tail becomes accessible because per-transaction friction
drops by orders of magnitude.

2.2 Capabilities
The multiplexer is built on three technical capabilities that enable it to serve as this universal
adapter - each addressing one of the structural shifts identified earlier: compose for scale, estimate
for economy, and automate for agents.

2.2.1 Compose

Data sources are heterogeneous such as text, images, tables, audio, code or time series with vary-
ing schemas, formats, and metadata conventions. The multiplexer enables composition through
standardized metadata that describes schemas, semantics, and provenance. Sources annotated with
this metadata become discoverable across repositories and combinable without per-source integra-
tion. Provenance tracks lineage as data flows through transforms, enabling audit and attribution.
Standards like Croissant (a metadata format for ML datasets) [1] provide a foundation; Brickroad
extends this with tooling for schema mapping, quality signals, and dynamic discovery.

Listing 1: Compose: combining heterogeneous sources
# Discover sources matching domain and format requirements
sources = M.discover ({

"domain": "medical_imaging",
"formats": ["dicom", "nifti", "png"]

})
# Returns: sources with standardized schema mappings

# Compose multiple sources into unified dataset
composed = M.compose ([

sources["chest_xray_nih"], # 112k images , DICOM
sources["covid_ct_scans"], # 20k images , NIfTI
sources["radiology_reports"] # 500k reports , JSON

])
# Returns: unified dataset with cross -modal alignment
# Schema conflicts resolved via Croissant metadata mappings

2.2.2 Estimate

Rather than relying on marketing claims, the multiplexer employs task-data matching to predict
utility before acquisition [6]. Sandbox evaluation protocols assess how a source would contribute to
a specific task. Scaling laws enable forecasting gains from subsamples [7, 4]. The result is utility-
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ranked recommendations: sources sorted by measured contribution to the endpoint’s task, enabling
budget-optimal selection and preview before commitment.

Listing 2: Estimate: predict utility before acquisition
# Search for candidate sources
candidates = M.search ({"task": "chest_pathology_detection"})

# Estimate utility on sample before full acquisition
estimates = M.estimate(

candidates=candidates ,
task_spec ={"model": "resnet50", "metric": "auroc"},
sample_budget =1000 # evaluate on 1k-sample preview

)
# Returns: {source_id: predicted_auroc , confidence_interval}
# "chest_xray_nih ": 0.87 +/- 0.02
# "covid_ct_scans ": 0.72 +/- 0.03
# Enables: select top -k sources by predicted utility

2.2.3 Automate

Agentic workflows integrate discovery, preview, evaluation, and checkout into a unified experience.
Protocol integration brings data procurement directly into developer environments, from natural-
language request to licensed data in seconds:

Listing 3: Automate: end-to-end procurement
# Full procurement workflow in one call
query = {

"task": "sentiment_classification",
"modality": "text",
"budget": 1000, # max data_cost in USD
"license": "commercial",
"min_samples": 50000

}
result = M.route(query)
# Returns: optimal source bundle with utility estimates
# {
# sources: [" amazon_reviews", "yelp_dataset "],
# total_utility: 0.89,
# data_cost: 847,
# tx_cost: 12 # minimized but nonzero
# }

3 The Future We Are Building For
The Brickroad multiplexer enables an economy where transaction costs are harmonized through
standardized interfaces, transparent pricing, and pre-baked licensing that reduce the fixed costs
currently blocking participation. Data flows at minimal friction from heterogeneous sources to
diverse endpoints, routed by utility rather than by who can afford the lawyers. Price reflects utility
through dynamic, task-dependent valuation that replaces opaque, one-size-fits-all deals. Feedback
loops become sustainable as compensation flows back to data generators proportional to the utility
their data creates [3, 9], ensuring the ecosystem regenerates rather than depletes.
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3.1 Towards Learning Systems That Price Value Creation
Traditional learning theory largely treats data as given: fixed datasets with known properties. The
central questions concern generalization, sample complexity, and convergence. Active learning and
data selection have studied which samples to acquire. When data is acquired from a market with
multiple sources and varying prices, a new learning signal emerges rooted in the fundamentals of
economic value creation.

The Brickroad multiplexer enables a learning theory that prices in economic value creation.
The marginal utility of a data source can be estimated before acquisition through sample-based
evaluation and scaling law extrapolation [6, 7]. This transforms learning curves into economic
curves: the diminishing returns of additional data, well-studied in statistical learning, now carry
dollar values. Each point on the curve represents not just accuracy but cost.

This enables optimal stopping : acquire data until marginal cost exceeds marginal utility. Define
the marginal value of source Si as ∆Ui = U({S1, . . . , Si}) − U({S1, . . . , Si−1}), the incremental
utility from adding Si to the existing data. The fair market value of Si is bounded by this marginal
utility, adjusted for scarcity:

FMV(Si) ≈ ∆Ui · ϕ(scarcityi) (5)

where ϕ captures the premium for unique or hard-to-replicate sources. In a functioning market,
price should track this value. The multiplexer provides the infrastructure to compute these signals
at scale, enabling rational data acquisition where budgets are allocated to maximize utility per
dollar spent. Fair market value aggregates information about downstream task performance across
the entire market. This is a distributed evaluation that most single buyers could not afford. When
data is priced by utility, price itself becomes a signal: high prices reveal scarce, high-impact sources;
price movements track shifts in what the market needs.

3.2 Expanding the Space of Feasible Tasks
High transaction costs make entire tasks infeasible. Consider a task requiring composition of 10
niche datasets, each with $50k in transaction overhead. The total transaction cost is $500k before
any data is acquired. This prices out academic research on specialized topics, startups exploring
new domains, and agents that need novel data combinations.

Let F(B) denote the set of feasible tasks given budget B:

F(B) =
{
τ :

∑
i∈τ

Ct,i < B
}

(6)

where Ct,i is the transaction cost for source i. As transaction costs approach their minimum, this
set expands dramatically.

3.3 Value Creation at the Information Frontier

Figure 2: MoM-z14, the far-
thest known galaxy as of Jan-
uary 2026 [8].

In May 2025, JWST captured MoM-z14 (Figure 2): light emitted
280 million years after the Big Bang and priced, in practice, by the
engineering and coordination required to observe it. That is the
first economic lesson of the frontier: information is not discovered
for free. It is produced under a series of constraints–capital, time,
bandwidth, and institutional friction–until a boundary is reached
where the next bit costs meaningfully more than the last and it
becomes unfeasible to produce.

In information economies, the same principle holds. Widely
available data is a commodity: replicable, substitutable, and therefore priced near its marginal
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cost of reproduction. Its marginal contribution to economic performance tends toward zero as the
market saturates; competition drives rents out of the “center.” What remains defensible – what
sustains surplus – is information that is (i) decision-relevant for a particular task and/or (ii) scarce
in the economic sense: costly to obtain, costly to verify, costly to integrate, or costly to replicate.

The Brickroad multiplexer is aimed at tackling this boundary condition. Its job is not to
manufacture scarcity; it is to reduce the deadweight loss that prevents scarce, high-signal data from
clearing to the endpoints that value it most. In microstructure terms, the Brickroad multiplexer
lowers the bid–ask spread created by search, contracting, evaluation, and integration overhead: it
compresses transaction cost without collapsing data cost. When the fixed costs fall, the long tail
becomes liquid enough to trade: small datasets can clear; episodic feeds can clear; specialized sources
can clear. The frontier becomes accessible not by lowering standards, but by making verification
cheaper than doubt.

Brickroad | brickroad.network | Building the data multiplexer for the AI economy.
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